N89-16368

Rdesign: A Data Dictionary with Relatignal Database Design
Capabilities in Ada

Anthony A. Lekkos 1
Teresa Ting-Yin Kwok

University of Houston, Clear Lake

1. Introduction

Data Dictionary 1is defined to be the set of all data
attributes, which describe data objects in terms of their
intrinsic attributes, such as name, type, size, format and
definition. It 1is recognized as the database for the
Information Resource Management - to facilitate
understanding and communication about the relationship
between system applications and system data usage and to
assist in achieving data independence by permitting system
applications to access data without knowledge of the
location or storage characteristics of the data in the
system [Allen82]}.

The following are considered to be its primary
objectives:~-

1. To achieve control of the data resource, by
providing an inventory of that resource. To
enforce standards and validation.

2. To control the costs of developing and main-
taining applications.

3. To provide for independence of metadata
across computing environments, improving
resiliency to the effects of hardware and
sof tware changes [Allen82].

Much of the importance of a data dictionary has been
recognized, yet, 1little of it has been utilized to support
an automated database design.

*
Ada is a registered trademark of the U.S Government- Ada

Joint Program QOffice.
Supported by NASA/JSC-UHCL Ada-Beta site Contract.

F.4.5.1

A research and development effort to use ADA at UHCL
has produced a data dictionary with database design
capabilities. This project supports data specification and
analysis and offers a choice of the relational, network, and
hierarchical model for logical database design. It provides
a highly-integrated set of analysis and design
transformation tools which range from templates for data
element definition or modification, spreadsheet for defining
functional dependencies, normalization, to logical design
generator. ,

2. The Data Dictionary with Database Design Capabilities

2.1 The Data Dictionary

The structure for the data dictionary is essentially
relational in nature with the data element definition
normalized to third normal form, while the related projects
are kept in another relation. Further, the dictionary is
furnished with the following facilities:-

Define --

creates a new data element entry in the data
dictionary. A template is used to enter the
data element name, type, size, range,
description, validation rules, picture,
intensity, display attribute, should the
element type be enumeration, the enumeration
list could also be entered.

Modify --

changes any data element specification
created with "pefine". If the data element
name 1is changed, it creates a new data
element under this new name -- essentially,
it performs a "Copy" function under this
circumstance. Again, a template is used for
all field entries.

Search -~

retrieves data element specifications from
the data dictionary and displays them on
screen. This differs from "Report" in that
only data element names are displayed. A
global search <could be done by entering an
"*"_, A 1list of names will be displayed on
screen one page at a time.

F.4.5.2

Purge --
removes a data element from the data
dictionary if the data element is used only
in the current project. The element 1is not
purged if it is used by other projects.

Transfer --

imports data element definitions from an
external text file or exports data element
definitions to an external text file. All of
the elements could be imported or exported
all at once, or they could be imported or
exported individually, or they could be
imported or exported according to projects.

Report --

lists in detail the data element definition
for a single data element or a series of
data elements. The listing could go to the
terminal or to the system printer. If
terminal is chosen as the output device, the
data element definition will be displayed on
screen one page at a time.

2.2 Functional Dependencies
Given a project with its own set of data elements, one

can proceed to define functional dependencies amongst data
elements. The following facilities are provided :-

Clear --
which clears out all previously defined
functiona dependencies.

Spreadsheet --

data element names are displayed in rows and
columns in a spreadsheet. Entering appro-
priate symbols in corresponding positions or
"cells" will define functional dependencies
amongst elements, Using the tab key or arrow
keys, one can move around the cells. Should
the arrow go beyond bounds the spreadsheet
will move one column left/right or one row
up/down dependent on the arrow key hit and
its position. One can also move the
spreadsheet one page at a time by pressing
Function key 1, 2, 3 or 4 to go up, down,
left or right.

"F.4.5.3

The following symbols are used to define functional
dependencies :-

==> means row element determines column element

means column element determines row element

A
1]
"

KEY means element is a key, row element name should
be the same name as column element

N/A means not applicable, row element name should be
the same as column element name where the
element is not a key

+=> means concatenation of row elements to identify
column element

<=+ means concatenation of column elements to
identify row element

‘ To make the spreadsheet even more convenient to use,
there are a few hidden keys :-

R = Refresh --
the screen is refreshed, in addition
todisplaying symbols used to define elements
functional dependencies, the complementary
symbols are also displayed.
H = Help --
help can be invoked.
B = Beginning --
spreadsheet moves to the beginning of the
list of data elements row-wise or column-
wise.
|
|
E = End --
spreadsheet moves to the end of data element
list row-wise or column-wise.
F = Find --

gets a particular data element which will be
displayed in the middle of the list row-wise
or column-wise.

F.4.5.4

T = Toggle --
Toggles the symbol, for example, pressing “T"
at a place where it displays "N/A" will
change the symbol to "KEY".

To update the functional dependencies, one
only needs to blank out the entry, enter
appropriate symbols or Jjust toggle the
symbols,

P = Print --
will print out the functional dependencies to
the screen or to a file.

2.3 Database Design Generator

After the functional dependencies are defined, the
normalization tool can be utilized to automatically
normalize the relations in third normal form. Each table
structure is displayed and a name should be given.

At this point, all the tables so created are in third
normal form.

For application or implementation reasons, one may have
to violate the rules for normalization or to keep certain
relations not in third normal form. A "maintain-table"
facility is provided so that a database designer can define
his own table with 1its own set of keys and attributes.
Moreover, he can rename a table, delete a table, delete
certain keys or attributes in a table or add certain keys
or attributes in a table. The system will not re-normalize
these tables. There is one constraint, however, the keys
and/or attributes had to be defined in data dictionary.

Again a spreadsheet is employed to define the
relationships amongst relations, be it one-to-one, one-to-
many, many-to-many or no-relations.

A refresh function will not be applicable in this case
as the relationship between the row relation and the column
relation may not be reciprocal.

A parent-child graph could be denerated after the
relationships are defined. The graph could be printed out
to the system printer or to the screen.

The conceptual schema is then generated and output goes
to the screen and a text file so that the designer can view
it and make modifications if necessary. Since the data
elements used are governed by the data dictionary,
consistency, integrity and validity can be achieved easily.

F.4.5.5

Following is a SQL-type logical design interface so
generated :-

Rem
Rem SQL/DS Database Design Identification Section

Rem
Rem Application : DIS

Rem
Rem Date created: 6/6/86

Rem

:7=3 1 e ——
Rem SQL/DS Database Tables Create Commands Section

REM ——==e— e e e e — e —— e

Create Table DEPT

(DEPT_NAME Char (32) not null,
BUDGET Number (7).,
DEPT_MGR Char (32),
LOCATION Char (32));

Create Unique Index DEPT_INDEX on DEPT (DEPT_NAME);

Create Table EMPLOYEE

(EMP_NAME Char (32) not null,
DEPT_NAME Char (32),
EMPLMNT_DATE Char (8),
POSITION Char (32),
SALARY Number (7));

Create Unique Index EMPL_INDEX on EMPLOYEE (EMP_NAME);

Create Table PROJECT

(PROJ_NAME Char (32) not null,
DEPT_NAME Char (32),
CHARGE_NO Number (4),
COMPL_DATE Char (8),
PROJ_LEADER Char (32));

Create Unique Index PROJ_INDEX on PROJECT (PROJ_NAME);

Create Table EMP_PROJ

(EMP_NAME Char (32) not null,
PROJ_NAME Char (32) not null,
CHARGED_HRS Number (4),
EMPPROJ_DATE Char (8));

Create Unigue Index EMPPROJ_INDEX on EMP_PROJ
(EMP_NAME, PROJ_NAME) ;

3. User Interface

F.4.5.6

Much of the work for maintaining the data dictionary is
done through a template, e.g., define and modify, user only
needs to fill in the blanks, other work 1like defining
functional dependencies and relationships amongst tables is
done through a spreadsheet. The whole system is menu driven
with the first two rows of the screen dedicated to commands.
To go up to the command line, one only needs to press <F2>,.
One can then use Tab, or arrows to move across the command
line. A <return> selects th command. The 24th row on the
screen is dedicated to function key explanation while the
23rd row 1is used for message line and the 22nd row 1is used
for prompt line. The rest of the screen will be used for
display or for the template. Help could be 1invoked
throughout the screens.

References

[Allen82] Frank W. Allen, Mary E. S. Loomis, Michael V.
Mannino "The Integrated Dictionary/Directory
System" , ACM Comp. Survey,l14:2, 1982.

[Goldstein85] Robert C. Goldstein "Database :Technology and
Management John Wiley and Sons, Inc., 1985.

[Curtice84] R.M. Curtice "IRMA: An Automated Logical Data
Base Design and Structured Analysis Tool",
IEEE Database Eng. 7:4, December 1984.

[Reiner86] David Reiner, Gretchen Brown, Mark Friedell,
et al, "A Database Designer's Workbench"
submitted to Dijon ER Conference, 1986.

[Bjornerstedt84) A.Bjornerstedt and C. Hulten "RED1l: A
Database Design Tool for the Relational Model
of Data", IEEE Database Eng. 7:4, December
1984.

F.4.5.,7

